Appendix: Computer codes

A.1 INTRODUCTION

The diskette included in the volume contains the Fortran implementations of the most effective algorithms described in the various chapters. Table A.1 gives, for each code, the problem solved, the approximate number of lines (including comments), the section where the corresponding procedure (which has the same name as the code) is described, and the type of algorithm implemented. Most of the implementations are exact branch-and-bound algorithms which can also be used to provide approximate solutions by limiting the number of backtrackings through an input parameter (notation Exact/Approximate in the table).

<table>
<thead>
<tr>
<th>Code</th>
<th>Problem</th>
<th>Lines</th>
<th>Section</th>
<th>Type of algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1</td>
<td>0-1 Knapsack</td>
<td>280</td>
<td>2.5.2</td>
<td>Exact</td>
</tr>
<tr>
<td>MT1R</td>
<td>0-1 Knapsack</td>
<td>300</td>
<td>2.5.2</td>
<td>Exact (real data)</td>
</tr>
<tr>
<td>MT2</td>
<td>0-1 Knapsack</td>
<td>1400</td>
<td>2.9.3</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTB2</td>
<td>Bounded Knapsack</td>
<td>190 (+1400)*</td>
<td>3.4.2</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTU2</td>
<td>Unbounded Knapsack</td>
<td>1100</td>
<td>3.6.3</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTSL</td>
<td>Subset-Sum</td>
<td>780</td>
<td>4.2.3</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTC2</td>
<td>Change-Making</td>
<td>450</td>
<td>5.6</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTCB</td>
<td>Bounded Change-Making</td>
<td>380</td>
<td>5.8</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTM</td>
<td>0-1 Multiple Knapsack</td>
<td>670</td>
<td>6.4.3</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTHM</td>
<td>0-1 Multiple Knapsack</td>
<td>590</td>
<td>6.6.2</td>
<td>Approximate</td>
</tr>
<tr>
<td>MTG</td>
<td>Generalized Assignment</td>
<td>2300</td>
<td>7.3</td>
<td>Exact/Approximate</td>
</tr>
<tr>
<td>MTHG</td>
<td>Generalized Assignment</td>
<td>500</td>
<td>7.4</td>
<td>Approximate</td>
</tr>
<tr>
<td>MTP</td>
<td>Bin Packing</td>
<td>1330</td>
<td>8.5</td>
<td>Exact/Approximate</td>
</tr>
</tbody>
</table>

* MTB2 must be linked with MT2.
All programs solve problems defined by integer parameters, except MT1R which solves the 0-1 single knapsack problem with real parameters.

All codes are written according to PFORT, a portable subset of 1966 ANSI Fortran, and are accepted by the PFORT verifier developed by Ryder and Hall (1981) at Bell Laboratories. The codes have been tested on a Digital VAX 11/780 and a Hewlett-Packard 9000/840.

With the only exception of MTB2 (which must be linked with MT2), the codes are completely self-contained. Communication to the codes is achieved solely through the parameter list of a “main” subroutine whose name is that of the code.

The following sections give, for each problem and for each code, the corresponding comment and specification statements.

A.2 0-1 KNAPSACK PROBLEM

A.2.1 Code MT1

SUBROUTINE MT1 (N, P, W, C, Z, X, JDIM, JCK, XX, MIN, PSIGN, WSIGN, ZSIGN)

This subroutine solves the 0-1 single knapsack problem

\[
\text{maximize } Z = P(1) X(1) + \ldots + P(N) X(N) \\
\text{subject to } W(1) X(1) + \ldots + W(N) X(N) \leq C, \\
X(J) = 0 \text{ or } 1 \text{ for } J = 1, \ldots, N
\]

The program implements the branch-and-bound algorithm described in Section 2.5.2, and derives from an earlier code presented in S. Martello, P. Toth, “Algorithm for the solution of the 0-1 single knapsack problem”, Computing, 1978.

The input problem must satisfy the conditions

1. \(2 \leq N \leq JDIM - 1\);
2. \(P(J), W(J), C\) positive integers;
3. \(\max (W(J)) \leq C\);
4. \(W(1) + \ldots + W(N) > C\);
5. \(P(J)/W(J) \geq P(J + 1)/W(J + 1)\) for \(J = 1, \ldots, N - 1\).

MT1 calls 1 procedure: CHMT1.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT1.

No machine-dependent constant is used.
Appendix: Computer codes

MT1 needs 8 arrays (P, W, X, XX, MIN, PSIGN, WSIGN and ZSIGN) of length at least \(N + 1 \).

Meaning of the input parameters:

- \(N \) = number of items;
- \(P(J) \) = profit of item \(J \) (\(J = 1, \ldots, N \));
- \(W(J) \) = weight of item \(J \) (\(J = 1, \ldots, N \));
- \(C \) = capacity of the knapsack;
- \(JDIM \) = dimension of the 8 arrays;
- \(JCK \) = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

- \(Z \) = value of the optimal solution if \(Z > 0 \),
 = error in the input data (when \(JCK = 1 \)) if \(Z < 0 \):
 condition \(-Z\) is violated;
- \(X(J) \) = 1 if item \(J \) is in the optimal solution,
 = 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN and ZSIGN are dummy.

All the parameters are integer. On return of MT1 all the input parameters are unchanged.

\[
\begin{align*}
\text{INTEGER} & \quad P(JDIM), W(JDIM), X(JDIM), C, Z \\
\text{INTEGER} & \quad XX(JDIM), MIN(JDIM) \\
\text{INTEGER} & \quad PSIGN(JDIM), WSIGN(JDIM), ZSIGN(JDIM)
\end{align*}
\]

A.2.2 Code MT1R

SUBROUTINE MT1R \((N, P, W, C, EPS, Z, X, JDIM, JCK, \)
\(\quad \text{XX, MIN, PSIGN, WSIGN, ZSIGN, CRC, CRP}) \)

This subroutine solves the 0-1 single knapsack problem with real parameters

\[
\begin{align*}
\text{maximize} & \quad Z = P(1) \times (1) + \ldots + P(N) \times (N) \\
\text{subject to} & \quad W(1) \times (1) + \ldots + W(N) \times (N) \leq C, \\
& \quad X(J) = 0 \text{ or } 1 \text{ for } J = 1, \ldots, N.
\end{align*}
\]

The program implements the branch-and-bound algorithm described in Section 2.5.2, and is a modified version of subroutine MT1.
The input problem must satisfy the conditions

(1) $2 \leq N \leq JDIM - 1$;
(2) $P(J), W(J), C$ positive reals;
(3) $\max (W(J)) \leq C$;
(4) $W(1) + \ldots + W(N) > C$;
(5) $P(J)/W(J) \geq P(J + 1)/W(J + 1)$ for $J = 1, \ldots, N - 1$.

MT1R calls 1 procedure: CHMT1R.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT1R.

No machine-dependent constant is used.

MT1R needs 10 arrays (P, W, X, XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP) of length at least $N + 1$.

Meaning of the input parameters:

N = number of items;
$P(J) = \text{profit of item } J \ (J = 1, \ldots, N)$;
$W(J) = \text{weight of item } J \ (J = 1, \ldots, N)$;
$C = \text{capacity of the knapsack}$;
$\text{EPS} = \text{tolerance (two positive values } Q \text{ and } R \text{ are considered equal if } \text{ABS}(Q - R)/\max (Q, R) \leq \text{EPS})$;
$JDIM = \text{dimension of the 10 arrays}$;
$JCK = 1 \text{ if check on the input data is desired, } = 0 \text{ otherwise}$.

Meaning of the output parameters:

$Z = \text{value of the optimal solution if } Z > 0,$
$= \text{error in the input data (when } JCK = 1) \text{ if } Z < 0;$
condition $-Z$ is violated;
$X(J) = 1 \text{ if item } J \text{ is in the optimal solution},$
$= 0 \text{ otherwise}$.

Arrays XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP are dummy.

Parameters N, X, JDIM, JCK, XX and ZSIGN are integer. Parameters P, W, C, Z,
Appendix: Computer codes

MIN, PSIGN, WSIGN, CRC, CRP and EPS are real. On return of MT1R all the input parameters are unchanged.

```
REAL P(JDIM), W(JDIM)
INTEGER X(JDIM)
INTEGER XX(JDIM), ZSIGN(JDIM)
REAL MIN(JDIM), PSIGN(JDIM), WSIGN(JDIM), CRC(JDIM), CRP(JDIM)
```

A.2.3 Code MT2

SUBROUTINE MT2 (N, P, W, C, Z, X, JDIM, JFO, JFS, JCK, JUB,
IA1, IA2, IA3, IA4, RA)

This subroutine solves the 0-1 single knapsack problem

\[
\text{maximize } Z = P(1)X(1) + \ldots + P(N)X(N) \\
\text{subject to } W(1)X(1) + \ldots + W(N)X(N) \leq C, \\
X(J) = 0 \text{ or } 1 \text{ for } J = 1, \ldots, N.
\]

The program implements the enumerative algorithm described in Section 2.9.3.

The input problem must satisfy the conditions

1. \(2 \leq N \leq JDIM - 3;\)
2. \(P(J), W(J), C \text{ positive integers;}\)
3. \(\max (W(J)) \leq C;\)
4. \(W(1) + \ldots + W(N) > C;\)

and, if \(JFS = 1,\)

5. \(P(J)/W(J) \geq P(J + 1)/W(J + 1) \text{ for } J = 1, \ldots, N - 1.\)

MT2 calls 9 procedures: CHMT2, CORE, CORES, FMED, KP01M, NEWB, REDNS, REDS and SORTR.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MT2.

No machine-dependent constant is used.

MT2 needs 8 arrays (P, W, X, IA1, IA2, IA3, IA4 and RA) of length at least \(N + 3\).
Meaning of the input parameters:

- \(N \) = number of items;
- \(P(J) \) = profit of item \(J \) (\(J = 1, \ldots, N \));
- \(W(J) \) = weight of item \(J \) (\(J = 1, \ldots, N \));
- \(C \) = capacity of the knapsack;
- \(JDIM \) = dimension of the 8 arrays;
- \(JFO \) = 1 if optimal solution is required, = 0 if approximate solution is required;
- \(JFS \) = 1 if the items are already sorted according to decreasing profit per unit weight, = 0 otherwise;
- \(JCK \) = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

- \(Z \) = value of the solution found if \(Z > 0 \),
 = error in the input data (when \(JCK = 1 \)) if \(Z < 0 \):
 condition \(-Z \) is violated;
- \(X(J) \) = 1 if item \(J \) is in the solution found, = 0 otherwise;
- \(JUB \) = upper bound on the optimal solution value
 (to evaluate \(Z \) when \(JFO = 0 \)).

Arrays IA1, IA2, IA3, IA4 and RA are dummy.

All the parameters but RA are integer. On return of MT2 all the input parameters are unchanged.

\[
\begin{align*}
\text{INTEGER} & \ P(JDIM), \ W(JDIM), \ X(JDIM), \ C, \ Z \\
\text{DIMENSION} & \ IA1(JDIM), \ IA2(JDIM), \ IA3(JDIM), \ IA4(JDIM) \\
& \text{DIMENSION RA(JDIM)}
\end{align*}
\]

A.3 BOUNDED AND UNBOUNDED KNAPSACK PROBLEM

A.3.1 Code MTB2

SUBROUTINE MTB2 (N, P, W, B, C, Z, X,
JDIM1, JDIM2, JFO, JFS, JCK, JUB,
ID1, ID2, ID3, ID4, ID5, ID6, ID7, RD8)
This subroutine solves the bounded single knapsack problem

\[
\text{maximize } Z = P(1) X(1) + \ldots + P(N) X(N)
\]

\[
\text{subject to } W(1) X(1) + \ldots + W(N) X(N) \leq C,
\]

\[
0 \leq X(J) \leq B(J) \quad \text{for } J = 1, \ldots, N,
\]

\[
X(J) \text{ integer} \quad \text{for } J = 1, \ldots, N.
\]

The program implements the transformation method described in Section 3.2.

The problem is transformed into an equivalent 0-1 knapsack problem and then solved through subroutine MT2. The user must link MT2 and its subroutines to this program.

The input problem must satisfy the conditions

(1) \(2 \leq N \leq JDIM1 - 1;\)
(2) \(P(J), W(J), B(J), C\) positive integers;
(3) \(\max (B(J)W(J)) \leq C;\)
(4) \(B(1)W(1) + \ldots + B(N)W(N) > C;\)
(5) \(2 \leq N + (\log_2(B(1)) + \ldots + \log_2(B(N))) \leq JDIM2 - 3;\)

and, if JFS = 1,

(6) \(P(J)/W(J) \geq P(J + 1)/W(J + 1)\) for \(J = 1, \ldots, N - 1.\)

MTB2 calls 4 procedures: CHMTB2, SOL, TRANS and MT2 (external).

Communication to the program is achieved solely through the parameter list of MTB2.

No machine-dependent constant is used.

MTB2 needs

4 arrays \((P, W, B\) and \(X)\) of length at least \(JDIM1;\)
8 arrays \((ID1, ID2, ID3, ID4, ID5, ID6, ID7\) and \(RD8)\) of length at least \(JDIM2.\)

Meaning of the input parameters:

\(N\) = number of item types;
\(P(J)\) = profit of each item of type \(J\) \((J = 1, \ldots, N);\)
\(W(J)\) = weight of each item of type \(J\) \((J = 1, \ldots, N);\)
\(B(J)\) = number of items of type \(J\) available \((J = 1, \ldots, N);\)
C = capacity of the knapsack;
JDIM1 = dimension of arrays P, W, B, X;
JDIM2 = dimension of arrays ID1, ID2, ID3, ID4, ID5, ID6, ID7, RD8;
JFO = 1 if optimal solution is required,
= 0 if approximate solution is required;
JFS = 1 if the items are already sorted according to decreasing profit per unit weight (suggested for large B(J) values),
= 0 otherwise;
JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0: condition \(-Z\) is violated;
X(J) = number of items of type J in the solution found;
JUB = upper bound on the optimal solution value
(to evaluate Z when JFO = 0).

Arrays ID1, ID2, ID3, ID4, ID5, ID6, ID7 and RD8 are dummy.

All the parameters but RD8 are integer. On return of MTB2 all the input parameters are unchanged.

INTEGER P(JDIM1), W(JDIM1), B(JDIM1), X(JDIM1), C, Z
INTEGER ID1(JDIM2), ID2(JDIM2), ID3(JDIM2), ID4(JDIM2)
INTEGER ID5(JDIM2), ID6(JDIM2), ID7(JDIM2)
REAL RD8(JDIM2)

A.3.2 Code MTU2

SUBROUTINE MTU2 (N, P, W, C, Z, X,
JDIM, JFO, JCK, JUB,
PO, WO, XO, RR, PP)

This subroutine solves the unbounded single knapsack problem

maximize \(Z = P(1) X(1) + \ldots + P(N) X(N)\)
subject to \(W(1) X(1) + \ldots + W(N) X(N) \leq C,\)
\(X(J) \geq 0\) and integer for \(J = 1, \ldots, N.\)
The program implements the enumerative algorithm described in Section 3.6.3.

The input problem must satisfy the conditions

1. \(2 \leq N \leq JDIM - 1\);
2. \(P(J), W(J), C\) positive integers;
3. \(\max(W(J)) \leq C\).

MTU2 calls 5 procedures: CHMTU2, KSMALL, MTU1, REDU and SORTR. KSMALL calls 8 procedures: BLD, BLDF, BLDS1, DETNS1, DETNS2, FORWD, MPSORT and SORT7.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTU2. No machine-dependent constant is used.

MTU2 needs 8 arrays (P, W, X, PO, WO, XO, RR and PP) of length at least JDIM.

Meaning of the input parameters:

\[N\] = number of item types;
\[P(J)\] = profit of each item of type \(J\) \((J = 1, \ldots, N)\);
\[W(J)\] = weight of each item of type \(J\) \((J = 1, \ldots, N)\);
\[C\] = capacity of the knapsack;
\[JDIM\] = dimension of the 8 arrays;
\[JFO\] = 1 if optimal solution is required, = 0 if approximate solution is required;
\[JCK\] = 1 if check on the input data is desired, = 0 otherwise.

Meaning of the output parameters:

\[Z\] = value of the solution found if \(Z > 0\), = error in the input data (when \(JCK = 1\)) if \(Z < 0\): condition \(-Z\) is violated;
\[X(J)\] = number of items of type \(J\) in the solution found;
\[JUB\] = upper bound on the optimal solution value (to evaluate \(Z\) when \(JFO = 0\)).

Arrays PO, WO, XO, RR and PP are dummy.

All the parameters but XO and RR are integer. On return of MTU2 all the input parameters are unchanged.
INTEGER P(JDIM), W(JDIM), X(JDIM)
INTEGER PO(JDIM), WO(JDIM), PP(JDIM), C, Z
REAL RR(JDIM), XO(JDIM)

A.4 SUBSET-SUM PROBLEM

A.4.1 Code MTSL

SUBROUTINE MTSL (N, W, C, Z, X, JDN, JDD, ITMM, JCK,
WO, IND, XX, WS, ZS, SUM,
TD1, TD2, TD3)

This subroutine solves the subset-sum problem

maximize \(Z = W(1) X(1) + \ldots + W(N) X(N) \)

subject to \(W(1) X(1) + \ldots + W(N) X(N) \leq C, \)
\(X(J) = 0 \) or \(1 \) for \(J = 1, \ldots, N. \)

The program implements the mixed algorithm described in Section 4.2.3.

The input problem must satisfy the conditions

1) \(2 \leq N \leq JDN - 1; \)
2) \(W(J), C \) positive integers;
3) \(\max (W(J)) < C; \)
4) \(W(1) + \ldots + W(N) > C. \)

MTSL calls 8 procedures: CHMTSL, DINSM, MTS, PRESF, SORTI, TAB,
UPSTAR and USEDIN.

If not present in the library of the host, the user must supply an integer function
JIAND(I1, I2) which sets JIAND to the bit-by-bit logical AND of I1 and I2.

Communication to the program is achieved solely through the parameter list of
MTSL.
No machine-dependent constant is used.

MTSL needs

2 arrays (W and X) of length at least JDN;
6 arrays (WO, IND, XX, WS, ZS and SUM) of length at least ITMM;
3 arrays (TD1, TD2 and TD3) of length at least JDD \(\times 2. \)
Appendix: Computer codes

Meaning of the input parameters:

\[N = \text{number of items}; \]
\[W(J) = \text{weight of item } J (J = 1, \ldots, N); \]
\[C = \text{capacity}; \]
\[JDN = \text{dimension of arrays } W \text{ and } X; \]
\[JDD = \text{maximum length of the dynamic programming lists} \]
\[\quad \text{(suggested value } JDD = 5000); \]
\[\text{ITMM} = (\text{maximum number of items in the core problem}) + 1; \text{ ITMM} = \]
\[JDN \text{ in order to be sure that the optimal solution is found}. \text{ ITMM} < \]
\[JDN \text{ (suggested value } \text{ITMM} = 91) \text{ produces an approximate solution} \]
\[\text{which is almost always optimal} \text{ (to check optimality, see whether} \]
\[Z = C); \]
\[JCK = 1 \text{ if check on the input data is desired,} \]
\[= 0 \text{ otherwise}. \]

Meaning of the output parameters:

\[Z = \text{value of the solution found if } Z > 0, \]
\[\quad = \text{error in the input data (when } JCK = 1 \text{) if } Z < 0; \]
\[\quad \text{condition } -Z \text{ is violated}; \]
\[X(J) = 1 \text{ if item } J \text{ is in the solution found,} \]
\[= 0 \text{ otherwise}. \]

Meaning of the internal variables which could be altered by the user:

\[\text{IT} = \text{length of the initial core problem (suggested value } \text{IT} = 30); \]
\[\text{ID} = \text{increment of the length of the core problem} \]
\[\quad \text{(suggested value } \text{ID} = 30); \]
\[\text{M2} = \text{number of items to be used for the second dynamic programming} \]
\[\quad \text{list; it must be } 2 \leq \text{M2} \leq \min (31, N - 4) \text{ (suggested value } \text{M2} = \]
\[\text{min} (2.5 \text{ ALOG10 (max } W(J)), 0.8 N)). \text{ M1, the number of items} \]
\[\quad \text{to be used for the first dynamic programming list, is automatically} \]
\[\quad \text{determined}; \]
\[\text{PERS} = \text{value used to determine } \bar{c} \text{ according to the formula given in} \]
\[\quad \text{Section 4.2.2 (suggested value } \text{PERS} = 1.3). \]

Arrays WO, IND, XX, WS, ZS, SUM, TD1, TD2 and TD3 are dummy.

All the parameters are integer. On return of MTSIL all the input parameters are unchanged.
INTEGER W(JDN), X(JDN), C, Z
INTEGER WO(ITMM), IND(ITMM), XX(ITMM)
INTEGER WS(ITMM), ZS(ITMM), SUM(ITMM)
INTEGER TD1(JDD,2), TD2(JDD,2), TD3(JDD,2)

A.5 BOUNDED AND UNBOUNDED CHANGE-MAKING PROBLEM

A.5.1 Code MTC2

SUBROUTINE MTC2 (N, W, C, Z, X, JDN, JDL, JFO, JCK, XX, WR, PR, M, L)

This subroutine solves the unbounded change-making problem
\[\text{minimize } Z = X(1) + \ldots + X(N) \]
\[\text{subject to } W(1) \cdot X(1) + \ldots + W(N) \cdot X(N) = C, \]
\[X(J) \geq 0 \text{ and integer for } J = 1, \ldots, N. \]

The program implements the enumerative algorithm described in Section 5.6.

The input problem must satisfy the conditions
1. \(2 \leq N \leq JDN - 1; \)
2. \(W(J), C \) positive integers;
3. \(\max (W(J)) < C. \)

MTC2 calls 5 procedures: CHMTC2, COREC, MAXT, MTC1 and SORTI.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTC2.

No machine-dependent constant is used.

MTC2 needs
- 5 arrays (W, X, XX, WR and PR) of length at least JDN;
- 2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:
- \(N \) = number of item types;
- \(W(J) \) = weight of each item of type \(J \) (\(J = 1, \ldots, N \));
- \(C \) = capacity;
- \(JDN \) = dimension of arrays W, X, XX, WR and PR;
- \(JDL \) = dimension of arrays M and L (suggested value \(JDL = \max (W(J)) - 1; \)
 if the core memory is not enough, JDL should be set to the largest possible value);
JFO = 1 if optimal solution is required,
 = 0 if approximate solution is required
 (at most 100 000 backtrackings are performed);
JCK = 1 if check on the input data is desired,
 = 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
 = no feasible solution exists if Z = 0,
 = error in the input data (when JCK = 1) if Z < 0:
 condition −Z is violated;
X(J) = number of items of type J in the solution found.

Arrays XX, M, L, WR and PR are dummy.

All the parameters are integer. On return of MTC2 all the input parameters are unchanged.

```
INTEGER W(JDN), X(JDN), C, Z
INTEGER XX(JDN), WR(JDN), PR(JDN)
INTEGER M(JDL), L(JDL)
```

A.5.2 Code MTCB

```
SUBROUTINE MTCB (N, W, B, C, Z, X, JDN, JDL, JFO, JCK,  
                  XX, WR, BR, PR, M, L)
```

This subroutine solves the bounded change-making problem

\[
\begin{align*}
\text{minimize } & \quad Z = X(1) + \ldots + X(N) \\
\text{subject to } & \quad W(1) X(1) + \ldots + W(N) X(N) = C, \\
& \quad 0 \leq X(J) \leq B(J) \quad \text{for } J = 1, \ldots, N, \\
& \quad X(J) \text{ integer} \quad \text{for } J = 1, \ldots, N.
\end{align*}
\]

The program implements the branch-and-bound algorithm described in Section 5.8.

The input problem must satisfy the conditions

1. \(2 \leq N \leq JDN - 1\);
2. \(W(J), B(J), C\) positive integers;
3. \(\max (W(J)) < C\);
Appendix: Computer codes

(4) \(B(J) \ W(J) \leq C \) for \(J = 1, \ldots, N; \)

(5) \(B(1) \ W(1) + \ldots + B(N) \ W(N) > C. \)

MTCB calls 3 procedures: CHMTCB, CMPB and SORTI.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTCB.

No machine-dependent constant is used.

MTCB needs

7 arrays \((W, B, X, XX, WR, BR \text{ and PR})\) of length at least \(JDN;\)
2 arrays \((M \text{ and } L)\) of length at least \(JDL.\)

Meaning of the input parameters:

\[
\begin{align*}
N &= \text{number of item types;} \\
W(J) &= \text{weight of each item of type } J (J = 1, \ldots, N); \\
B(J) &= \text{number of available items of type } J (J = 1, \ldots, N); \\
C &= \text{capacity;} \\
JDN &= \text{dimension of arrays } W, B, X, XX, WR, BR \text{ and PR;} \\
JDL &= \text{dimension of arrays } M \text{ and } L \text{ (suggested value } JDL = \max(W(J)) - 1; \text{ if the core memory is not enough, } JDL \text{ should be set to the largest possible value);} \\
JFO &= 1 \text{ if optimal solution is required,} \\
&= 0 \text{ if approximate solution is required} \\
&\quad \text{ (at most 100,000 backtrackings are performed);} \\
JCK &= 1 \text{ if check on the input data is desired,} \\
&= 0 \text{ otherwise.}
\end{align*}
\]

Meaning of the output parameters:

\[
\begin{align*}
Z &= \text{value of the solution found if } Z > 0, \\
&= \text{no feasible solution exists if } Z = 0, \\
&= \text{error in the input data (when } JCK = 1) \text{ if } Z < 0; \\
&\quad \text{condition } -Z \text{ is violated;} \\
X(J) &= \text{number of items of type } J \text{ in the solution found.}
\end{align*}
\]

Arrays XX, M, L, WR, BR and PR are dummy.

All the parameters are integer. On return of MTCB all the input parameters are unchanged.
Appendix: Computer codes

INTEGER W(JDN), B(JDN), X(JDN), C, Z
INTEGER XX(JDN), WR(JDN), BR(JDN), PR(JDN)
INTEGER M(JDL), L(JDL)

A.6 0-1 MULTIPLE KNAPSACK PROBLEM

A.6.1 Code MTM

SUBROUTINE MTM (N, M, P, W, C, Z, X, BACK, JCK, JUB)

This subroutine solves the 0-1 multiple knapsack problem

\[
\text{maximize } Z = \sum_{i=1}^{M} \sum_{j=1}^{N} P(i) (Y(i, 1) + \ldots + Y(M, 1)) + \sum_{i=1}^{M} \sum_{j=1}^{N} P(N) (Y(i, N) + \ldots + Y(M, N))
\]

subject to \(W(l) Y(I, 1) + \ldots + W(N) Y(I, N) \leq C(I) \) for \(I = 1, \ldots, M \),

\(Y(1, J) + \ldots + Y(M, J) \leq 1 \) for \(J = 1, \ldots, N \),

\(Y(I, J) = 0 \) or \(1 \) for \(I = 1, \ldots, M, J = 1, \ldots, N \).

The input problem must satisfy the conditions

1. \(2 \leq N \leq \text{MAXN} \) and \(1 \leq M \leq \text{MAXM} \), where \(\text{MAXN} \) and \(\text{MAXM} \) are defined by the first two executable statements;
2. \(P(J), W(J) \) and \(C(I) \) positive integers;
3. \(\min (C(I)) \geq \min (W(J)) \);
4. \(\max (W(J)) \leq \max (C(I)) \);
5. \(\max (C(I)) < W(1) + \ldots + W(N) \);
6. \(P(J)/W(J) \geq P(J + 1)/W(J + 1) \) for \(J = 1, \ldots, N - 1 \);
7. \(C(I) \leq C(I + 1) \) for \(I = 1, \ldots, M - 1 \).

MTM calls 5 procedures: CHMTM, PAR, PI, SIGMA and SKP.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTM.
No machine-dependent constant is used.
MTM needs

5 arrays (C, F, PBL, Q and V) of length at least M;
8 arrays (P, W, X, UBB, BS, XS, LX and LXI) of length at least N;
3 arrays (B, PS and WS) of length at least N + 1;
3 arrays (BB, XC and XL) of length at least M x N;
1 array (BL) of length at least M x (N + 1);
5 arrays (D, MIN, PBAR, WBAR and ZBAR) of length at least N (for internal use in subroutine SKP).

The arrays are currently dimensioned to allow problems for which M < 10 and N < 1000. Changing such dimensions also requires changing the dimension of BS, PS, WS, XS, LX and LXI in subroutine SIGMA, of BB, BL, XL, BS, PS, WS and XS in subroutine PI, of BB, LX and LXI in subroutine PAR, of D, MIN, PBAR, WBAR and ZBAR in subroutine SKP. In addition, the values of MAXN and MAXM must be conveniently defined.

Meaning of the input parameters:

\[N = \text{number of items}; \]
\[M = \text{number of knapsacks}; \]
\[P(J) = \text{profit of item } J \ (J = 1, \ldots, N); \]
\[W(J) = \text{weight of item } J \ (J = 1, \ldots, N); \]
\[C(I) = \text{capacity of knapsack } I \ (I = 1, \ldots, M); \]
\[\text{BACK} = -1 \text{ if exact solution is required,} \]
\[= \text{maximum number of backtrackings to be performed,} \]
\[\text{if heuristic solution is required;} \]
\[JCK = 1 \text{ if check on the input data is desired,} \]
\[= 0 \text{ otherwise.} \]

Meaning of the output parameters:

\[Z = \text{value of the solution found if } Z > 0, \]
\[= \text{error in the input data (when JCK = 1) if } Z < 0; \]
\[\text{condition } -Z \text{ is violated;} \]
\[X(J) = 0 \text{ if item } J \text{ is not in the solution found (Y(I, J) = 0 for all } I),} \]
\[= \text{knapsack where item } J \text{ is inserted, otherwise } (Y(X(J), J) = 1); \]
\[\text{JUB = upper bound on the optimal solution value} \]
\[\text{(to evaluate } Z \text{ when BACK } \geq 0 \text{ on input).} \]

All the parameters are integer. On return of MTM all the input parameters are unchanged except BACK (= number of backtrackings performed).
SUBROUTINE MTHM (N, M, P, W, C, Z, X, JDN, JDM, LI, JCK, CR, MIN, XX, X1, F)

This subroutine heuristically solves the 0-1 multiple knapsack problem

maximize $Z = P(1)(Y(1, 1) + \ldots + Y(M, 1)) + \ldots + P(N)(Y(1, N) + \ldots + Y(M, N))$

subject to $W(1)Y(I, 1) + \ldots + W(N)Y(I, N) \leq C(I)$
for $I = 1, \ldots, M$,

$Y(1,J) + \ldots + Y(M,J) \leq 1$ for $J = 1, \ldots, N$,

$Y(I,J) = 0$ or 1 for $I = 1, \ldots, M$, $J = 1, \ldots, N$.

The program implements the polynomial-time algorithms described in Section 6.6.2, and derives from an earlier code presented in S. Martello, P. Toth, "Heuristic algorithms for the multiple knapsack problem", Computing, 1981.

The input problem must satisfy the conditions

1) $2 \leq N \leq JDN - 1$ and $1 \leq M \leq JDM - 1$;
2) $P(J)$, $W(J)$ and $C(I)$ positive integers;
3) $\min(C(I)) \geq \min(W(J))$;
4) $\max(W(J)) \leq \max(C(I))$;
5) $\max(C(I)) < W(1) + \ldots + W(N)$;
6) $P(J)/W(J) \geq P(J+1)/W(J+1)$ for $J = 1, \ldots, N - 1$;
7) $C(I) \leq C(I+1)$ for $I = 1, \ldots, M - 1$.

MTHM can call 6 subroutines:

CHMTHM to check the input data;
MGR1 or MGR2 to find an initial feasible solution;
REARR to re-arrange a feasible solution;
IMPR1 and IMPR2 to improve on a feasible solution.
The user selects the sequence of calls through input parameters.

The program is completely self-contained and communication to it is achieved solely through the parameter list of MTHM. The only machine-dependent constant is used to define INF (first executable statement), which must be set to a large positive integer value.

MTHM needs

- 6 arrays (P, W, X, MIN, XX and X1) of length at least JDN;
- 2 arrays (C and CR) of length at least JDM;
- 1 array (F) of length at least JDM × JDM.

In addition, subroutine MGR2 uses

- 7 arrays of length 5;
- 1 array of length 201;
- 1 array of length 5 × 200.

Subroutine MGR2 is called only when \(M \leq 5 \) and \(N \leq 200 \).

Meaning of the input parameters:

- \(N \) = number of items;
- \(M \) = number of knapsacks;
- \(P(J) \) = profit of item \(J \) (\(J = 1, \ldots, N \));
- \(W(J) \) = weight of item \(J \) (\(J = 1, \ldots, N \));
- \(C(I) \) = capacity of knapsack \(I \) (\(I = 1, \ldots, M \));
- \(JDN \) = dimension of arrays P, W, X, MIN, XX and X1;
- \(JDM \) = dimension of arrays C, CR and F;
- \(LI \) = 0 to output the initial feasible solution,
 = 1 to also perform subroutines REARR and IMPR1,
 = 2 to also perform subroutines REARR, IMPR1 and IMPR2;
- \(JCK \) = 1 if check on the input data is desired,
 = 0 otherwise.

Meaning of the output parameters:

- \(Z \) = value of the solution found if \(Z > 0 \),
 = error in the input data (when \(JCK = 1 \)) if \(Z < 0 \):
 condition \(-Z\) is violated;
Appendix: Computer codes

X(J) = 0 if item J is not in the solution found
(i.e. if Y(I, J) = 0 for all I),
= knapsack where item J is inserted, otherwise
(i.e. if Y(X(J), J) = 1).

Arrays CR, MIN, XX, X1 and F are dummy.

All the parameters are integer. On return of MTHM all the input parameters are unchanged.

INTEGER P(JDN), W(JDN), X(JDN), C(JDM), Z
INTEGER MIN(JDN), XX(JDN), X1(JDN), CR(JDM)
INTEGER F(JDM, JDM)

A.7 GENERALIZED ASSIGNMENT PROBLEM

A.7.1 Code MTG

SUBROUTINE MTG (N, M, P, W, C, MINMAX,
Z, XSTAR, BACK, JCK, JB)

This subroutine solves the generalized assignment problem

\[
\text{opt } Z = P(1, 1) X(1, 1) + \ldots + P(1, N) X(1, N) + \\
\quad + \\
P(M, 1) X(M, 1) + \ldots + P(M, N) X(M, N)
\]

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to \(W(I, 1) X(I, 1) + \ldots + W(I, N) X(I, N) \leq C(I) \)
for \(I = 1, \ldots, M, \)

\(X(1, J) + \ldots + X(M, J) = 1 \) for \(J = 1, \ldots, N, \)

\(X(I, J) = 0 \) or \(1 \) for \(I = 1, \ldots, M, \quad J = 1, \ldots, N. \)

The program implements the branch-and-bound algorithm described in Sections 7.3–7.5.

The input problem must satisfy the conditions

1. \(2 \leq M \leq JDIMR; \)
2. \(2 \leq N \leq JDIMC \) (JDIMR and JDIMC are defined by the first two executable statements);
3. \(M \leq JDIMPC \) (JDIMPC, defined by the third executable statement, is used for packing array Y, and cannot be greater than (number of bits of the host) – 2; if
Appendix: Computer codes

a higher value is desired, subroutines YDEF and YUSE must be re-structured accordingly);

(4) \(P(I, J), W(I, J) \) and \(C(I) \) positive integers;

(5) \(W(I, J) \leq C(I) \) for at least one \(I \), for \(J = 1, \ldots, N \);

(6) \(C(I) \geq \min(W(I, J)) \) for \(I = 1, \ldots, M \).

In addition, it is required that

(7) (maximum level of the decision-tree) \(\leq \) JNLEV. (JNLEV is defined by the fourth executable statement.)

MTG calls 24 procedures: CHMTG, DEFPCK, DMIND, FEAS, GHA, GHBCD, GHX, GR1, GR2, HEUR, KPMAX, KPMIN, PEN0, PEN1, PREPEN, SKP, SORTI, SORTR, TERMIN, TRIN, UBFJV, UBR5, YDEF and YUSE.

If not present in the library of the host, the user must supply an integer function JIAND(I1, I2) which sets JIAND to the bit-by-bit logical AND of I1 and I2. Such function is used in subroutines YDEF and YUSE.

Communication to the program is achieved solely through the parameter list of MTG.

No machine-dependent constant is used.

MTG needs

17 arrays (C, DD, UD, Q, PACKL, IP, IR, IL, IF, WOBBL, KQ, FLREP, DMYR1, DMYR2, DMYR3, DMYR4 and DMYR5) of length at least \(M \);

25 arrays (XSTAR, XS, BS, B, KA, XXS, IOBBL, JOBBL, BEST, XJJUB, DS, DMYC1, DMYC2, DMYC3, DMYC4, DMYC5, DMYC6, DMYC7, DMYC8, DMYC9, DMYC10, DMYC11, DMYC12, DMYC13 and DMYC14) of length at least \(N \);

4 arrays (PS, WS, DMYCC1 and DMYCC2) of length at least \(N + 1 \);

6 arrays (E, CC, CS, TYPE, US and UBL) of length at least JNLEV;

7 arrays (P, W, A, X, PAK, KAP and MIND) of length at least \(M \times N \);

5 arrays (D, V, V, LB and UB) of length at least JNLEV \(\times M \);

1 array (Y) of length at least JNLEV \(\times N \);

2 arrays (MASK1 and ITWO) of length at least JDIMPC.

The arrays are currently dimensioned to allow problems for which

\[
\begin{align*}
M &\leq 10, \\
N &\leq 100, \\
\text{JNLEV} &\leq 150,
\end{align*}
\]
on a 32-bit computer (so, in the calling program, arrays P and W must be dimensioned at (10,100)). Changing such limits necessitates changing the dimension of all the arrays in subroutine MTG and in COMMON /PACK/ (which is included in subroutines MTG, YDEF and YUSE), as well as the four first executable statements.

Meaning of the input parameters:

\[N = \text{number of items}; \]
\[M = \text{number of knapsacks}; \]
\[P(I, J) = \text{profit of item } J \text{ if assigned to knapsack } I \]
\[(I = 1, \ldots, M; J = 1, \ldots, N); \]
\[W(I, J) = \text{weight of item } J \text{ if assigned to knapsack } I \]
\[(I = 1, \ldots, M; J = 1, \ldots, N); \]
\[C(I) = \text{capacity of knapsack } I \ (I = 1, \ldots, M); \]
\[\text{MINMAX} = 1 \text{ if the objective function must be minimized,} \]
\[= 2 \text{ if the objective function must be maximized;} \]
\[\text{BACK} = -1 \text{ if exact solution is required,} \]
\[= \text{maximum number of backtrackings to be performed,} \]
\[\text{if heuristic solution is required;} \]
\[\text{JCK} = 1 \text{ if check on the input data is desired,} \]
\[= 0 \text{ otherwise.} \]

Meaning of the output parameters:

\[Z = \text{value of the solution found if } Z > 0, \]
\[= 0 \text{ if no feasible solution exists,} \]
\[= \text{error in the input data (when JCK = 1) if } Z < 0; \]
\[\text{condition } -Z \text{ is violated;} \]
\[\text{XSTAR}(J) = \text{knapsack where item } J \text{ is inserted in the solution found;} \]
\[\text{JB} = \text{lower bound (if MINMAX = 1) or upper bound (if} \]
\[\text{MINMAX = 2) on the optimal solution value} \]
\[\text{(to evaluate } Z \text{ when BACK } \geq 0 \text{ on input).} \]

All the parameters are integer. On return of MTG all the input parameters are unchanged, with the following two exceptions. BACK gives the number of backtrackings performed; P(I, J) is set to 0 for all pairs (I, J) such that W(I, J) > C(I).

\[\text{INTEGER } P(10,100), W(10,100), C(10), \text{XSTAR}(100), Z, \text{BACK} \]
\[\text{INTEGER } DD(10), UD(10), Q(10), \text{PAKL}(10), IP(10), \text{IR}(10) \]
A.7.2 Code MTHG

SUBROUTINE MTHG (N, M, P, W, C, MINMAX, Z, XSTAR, JCK)

This subroutine heuristically solves the generalized assignment problem

$$\text{opt } Z = P(1, 1) \times (1, 1) \ + \ldots + \ P(1, N) \times (1, N) \ +$$

$$\ldots$$

$$P(M, 1) \times (M, 1) \ + \ldots + \ P(M, N) \times (M, N)$$

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to \[W(I, 1) \times (I, 1) + \ldots + W(I, N) \times (I, N) \leq C(I) \]

for \(I = 1, \ldots, M,\)

\[X(1, J) + \ldots + X(M, J) = 1 \quad \text{for } J = 1, \ldots, N, \]

\[X(I, J) = 0 \text{ or } 1 \text{ for } I = 1, \ldots, M, \ J = 1, \ldots, N. \]

The program implements the polynomial-time algorithms described in Section 7.4.

The input problem must satisfy the conditions

\[\text{INTEGER IL(10), IF(10), WOBBL(10), KQ(10), FLREP(10)} \]
\[\text{INTEGER XS(100), BS(100), B(100), KA(100), XXS(100)} \]
\[\text{INTEGER IOBBBL(100), JOBBL(100), BEST(100), XJJUB(100)} \]
\[\text{REAL DS(100)} \]
\[\text{INTEGER PS(101), WS(101)} \]
\[\text{INTEGER E(150), CC(150), CS(150)} \]
\[\text{INTEGER TYPE(150), US(150), UBL(150)} \]
\[\text{INTEGER A(10,100), X(10,100)} \]
\[\text{INTEGER PAK(10,100), KAP(10,100), MIND(10,100)} \]
\[\text{INTEGER D(150,10), VS(150,10)} \]
\[\text{INTEGER V(150,10), LB(150,10), UB(150,10)} \]
\[\text{INTEGER Y} \]
\[\text{INTEGER DMYR1(10), DMYR2(10), DMYR3(10)} \]
\[\text{INTEGER DMYR4(10), DMYR5(10)} \]
\[\text{INTEGER DMYC1(100), DMYC2(100), DMYC3(100)} \]
\[\text{INTEGER DMYC4(100), DMYC5(100), DMYC6(100)} \]
\[\text{INTEGER DMYC7(100), DMYC8(100), DMYC9(100)} \]
\[\text{INTEGER DMYC10(100), DMYC11(100), DMYC12(100)} \]
\[\text{INTEGER DMYC13(100)} \]
\[\text{INTEGER DMYCC1(101), DMYCC2(101)} \]
\[\text{REAL DMYCR1(100)} \]
\[\text{COMMON /PACK/ MASK1(30), ITWO(30), MASK, Y(150,100)} \]
(1) $2 \leq M \leq \text{JDIMR}$;
(2) $2 \leq N \leq \text{JDIMC}$ (JDIMR and JDIMC are defined by the first two executable statements);
(3) $P(I, J)$, $W(I, J)$ and $C(I)$ positive integers;
(4) $W(I, J) \leq C(I)$ for at least one I, for $J = 1, \ldots, N$;
(5) $C(I) \geq \min(W(I, J))$ for $I = 1, \ldots, M$.

MTHG calls 6 procedures: CHMTHG, FEAS, GHA, GHBCD, GHX and TRIN.

Communication to the program is achieved solely through the parameter list of MTHG.

No machine-dependent constant is used.

MTHG needs

- 6 arrays (C, $\text{DMYR}1$, $\text{DMYR}2$, $\text{DMYR}3$, $\text{DMYR}4$ and $\text{DMYR}5$) of length at least JDIMR;
- 7 arrays (XSTAR, BEST, $\text{DMYC}1$, $\text{DMYC}2$, $\text{DMYC}3$, $\text{DMYC}4$ and $\text{DMYC}R1$) of length at least JDIMC;
- 3 arrays (P, W and A) of length at least $\text{JDIMR} \times \text{JDIMC}$.

The arrays are currently dimensioned to allow problems for which

- $M \leq 50$,
- $N \leq 500$.

(so, in the calling program, arrays P and W must be dimensioned at $(50,500)$).

Changing such limits necessitates changing the dimension of all the arrays in subroutine MTHG, as well as the first two executable statements.

Meaning of the input parameters:

- N = number of items;
- M = number of knapsacks;
- $P(I, J)$ = profit of item J if assigned to knapsack I ($I = 1, \ldots, M$; $J = 1, \ldots, N$);
- $W(I, J)$ = weight of item J if assigned to knapsack I ($I = 1, \ldots, M$; $J = 1, \ldots, N$);
- $C(I)$ = capacity of knapsack I ($I = 1, \ldots, M$);
- MINMAX = 1 if the objective function must be minimized, = 2 if the objective function must be maximized;
- JCK = 1 if check on the input data is desired, = 0 otherwise.
Meaning of the output parameters:

\[Z = \begin{cases}
\text{value of the solution found if } Z > 0, \\
0 & \text{if no feasible solution is found,} \\
\text{error in the input data (when } JCK = 1) & \text{if } Z < 0: \\
\end{cases} \]

condition \(-Z\) is violated;

\[XSTAR(J) = \text{knapsack where item } J \text{ is inserted in the solution found.} \]

All the parameters are integer. On return of MTHG all the input parameters are unchanged, but \(P(I, J)\) is set to 0 for all pairs \((I, J)\) such that \(W(I, J) > C(I)\).

\[
\text{INTEGER } \text{P}(50,500), \text{ W}(50,500), \text{ C}(50), \text{ XSTAR(500)}, Z \\
\text{INTEGER BEST(500)} \\
\text{INTEGER A(50,500)} \\
\text{INTEGER DMYR1(50), DMYR2(50), DMYR3(50)} \\
\text{INTEGER DMYR4(50), DMYR5(50)} \\
\text{INTEGER DMYC1(500), DMYC2(500), DMYC3(500)} \\
\text{INTEGER DMYC4(500)} \\
\text{REAL DMYCR1(500)} \\
\]

A.8 BIN-PACKING PROBLEM

A.8.1 Code MTP

```plaintext
SUBROUTINE MTP (N, W, C, Z, XSTAR, 
JDIM, BACK, JCK, LB, 
WR, XSTARR, DUM, RES, REL, X, R, WA, 
WB, KFIX, FIXIT, XRED, LS, LSB, XHEU)
```

This subroutine solves the bin packing problem

minimize \[Z = \sum_{i=1}^{N} Y(i) \]

subject to \[\sum_{j=1}^{i} W(j) X(j, i) \leq C Y(i) \]

for \(i = 1, \ldots, N,\)

\[X(j, i) = \sum_{k=1}^{N} X(k, j) = 1 \]

for \(j = 1, \ldots, N,\)

\[Y(i) = 0 \text{ or } 1 \]

for \(i = 1, \ldots, N,\)

\[X(i, j) = 0 \text{ or } 1 \]

for \(i = 1, \ldots, N,\) \(j = 1, \ldots, N,\)

(i.e., minimize the number of bins of capacity \(C\) needed to allocate \(N\) items of size \(W(1), \ldots, W(N)\)).

The program implements the branch-and-bound algorithm described in Section 8.5.
The input problem must satisfy the conditions

1) $2 < N \leq JDIM$;
2) $W(J)$ and C positive integers;
3) $W(J) \leq C$ for $J = 1, \ldots, N$;
4) $W(J) > W(J+1)$ for $J = 1, \ldots, N-1$.

In the output solution (see below) the Z lowest indexed bins are used.

MTP calls 14 procedures: CHMTP, ENUMER, FFDLS, FIXRED, HBFDS, INSERT, LCL2, L2, L3, MWFDS, RESTOR, SEARCH, SORTI2 and UPDATE.

Communication to the program is achieved solely through the parameter list of MTP.

No machine-dependent constant is used.

MTP needs

17 arrays (W, $XSTAR$, WR, $XSTARR$, DUM, RES, REL, X, R, WA, WB, $KFIX$, $FIXIT$, $XRED$, LS, LSB and $XHEU$) of length at least $JDIM$.

Meaning of the input parameters:

- N = number of items;
- $W(J)$ = weight of item J;
- C = capacity of the bins;
- $JDIM$ = dimension of the 17 arrays;
- $BACK = -1$ if exact solution is required, $= maximum number of backtrackings to be performed. if heuristic solution is required;
- $JCK = 1$ if check on the input data is desired, $= 0$ otherwise.

Meaning of the output parameters:

- Z = value of the solution found if $Z > 0$, $= error in the input data (when JCK = 1) if Z < 0$: condition $-Z$ is violated;
- $XSTAR(J)$ = bin where item J is inserted in the solution found;
- $LB = lower bound on the optimal solution value (to evaluate Z when $BACK \geq 0$ on input).
All the arrays except W and XSTAR are dummy.

All the parameters are integer. On return of MTP all the input parameters are unchanged except BACK, which gives the number of backtrackings performed.

 INTEGER W(JDIM), XSTAR(JDIM), C, Z, BACK
 INTEGER WR(JDIM), XSTARR(JDIM), DUM(JDIM)
 INTEGER RES(JDIM), REL(JDIM), X(JDIM), R(JDIM)
 INTEGER WA(JDIM), WB(JDIM), KFIX(JDIM)
 INTEGER FIXIT(JDIM), XRED(JDIM), LS(JDIM)
 INTEGER LSD(JDIM), XHEU(JDIM)
Glossary

\(O(f(n))\) \hspace{1cm} \text{order of } f(n)

\(|S|\) \hspace{1cm} \text{cardinality of set } S

\(r(A)\) \hspace{1cm} \text{worst-case performance ratio of algorithm } A

\(\varepsilon(A)\) \hspace{1cm} \text{worst-case relative error of algorithm } A

\(\rho(B)\) \hspace{1cm} \text{worst-case performance ratio of bound } B

\([a]\) \hspace{1cm} \text{largest integer not greater than } a

\([a]\) \hspace{1cm} \text{smallest integer not less than } a

\(z(P)\) \hspace{1cm} \text{optimal solution value of problem } P

\(C(P)\) \hspace{1cm} \text{continuous relaxation of problem } P

\(L(P, \lambda)\) \hspace{1cm} \text{Lagrangian relaxation of problem } P \text{ through multiplier } \lambda

\(S(P, \pi)\) \hspace{1cm} \text{surrogate relaxation of problem } P \text{ through multiplier } \pi

\(i \pmod j\) \hspace{1cm} i - \left\lfloor \frac{i}{j} \right\rfloor \pmod j \hspace{1cm} (i, j \text{ positive integers})

\(\arg \max \{s_1, \ldots, s_n\}\) \hspace{1cm} \text{index } k \text{ such that } s_k \geq s_i \text{ for } i = 1, \ldots, n

\(\max \{s_1, \ldots, s_n\}\) \hspace{1cm} \text{max } \{s_1, \ldots, s_n\}

\(\arg \max_2 \{s_1, \ldots, s_n\}\) \hspace{1cm} \text{arg max } \{s_1, \ldots, s_n\}

\(\max_2 \{s_1, \ldots, s_n\}\) \hspace{1cm} \text{max}_2 \{s_1, \ldots, s_n\}

\(\arg \min, \min, \arg \min_2, \min_2\) \hspace{1cm} \text{are immediate extensions of the above}
Bibliography

R.L. Bulfin, R.G. Parker, C.M. Shetty (1979). Computational results with a branch and

E.S. Gottlieb, M.R. Rao (1988). Facets of the knapsack polytope derived from disjoint and

Bibliography

Author index

Note: listing in references section is indicated by bold page numbers.

Aho, A. V., 15, 18, 223, 275
Ahrens, J. H., 29, 39, 43, 107, 129, 130, 275
Aittoniemi, L., 88, 275
Armstrong, R. D., 80, 275
d’Atri, G., 56, 126, 275
Avis, D., 128, 275
Babat, L. G., 56, 275
Bachem, A., 74, 275
Baker, B. S., 223, 275
Balas, E., 14, 17, 47, 57, 58, 59, 60, 62, 68, 75, 76, 163, 275
Barr, R. S., 30, 275
Bellman, R., 37, 275
Bomstein, C. T., 22, 282
Brown, J. R., 237, 278
Bulfin, R. L., 88, 275
Cabot, A. V., 96, 276
Carpaneto, G., 191, 276
Chalmet, L., 191, 276
Chang, L., 145, 276
Chang, S. K., 142, 143, 145, 151, 276
Christofides, N., 168, 237, 276
Chvátal, V., 128, 276
Coffman, E. G., Jr., 222, 223, 275, 276
Cord, J., 276
Crowder, H., 13, 276

Dannenbring, D., 168, 280
Dantzig, G. B., 14, 16, 37, 162, 276
DeMaio, A., 191, 276
Dembo, R. S., 47, 276
Demers, A., 10, 223, 233, 278
Deo, N., 5, 32, 281
Dietrich, B. L., 13, 106, 276
Dreyfus, S. E., 275
Dudzinski, K., 5, 23, 24, 26, 80, 276
Dyer, M. E., 80, 276

Eilon, S., 237, 276
Elkihel, M., 36, 116, 281
Escudero, L. F., 13, 106, 276
Faaland, B., 107, 276
Fayard, D., 22, 30, 47, 48, 60, 68, 276, 277
Feldman, I., 96, 278
Finke, G., 29, 39, 43, 107, 129, 130, 275
Fischetti, M., 102, 122, 124, 176, 277
Fisher, M. L., 9, 20, 197, 206, 213, 218, 219, 277
Fisk, J. C., 179, 185, 277
Frieze, A. M., 128, 277
Garey, M. R., 6, 8, 10, 177, 178, 222, 223, 233, 276, 277, 278
Garfinkel, R. S., 5, 96, 277
Gelders, L., 191, 276
Gens, G. V., 56, 125, 126, 131, 277, 279
Geoffrion, A., 163, 277
Gill, A., 142, 143, 145, 151, 276
Gilmore, P. C., 14, 88, 95, 96, 146, 277
Glover, F., 80, 81, 158, 277
Goldberg, A. V., 57, 59, 277
Gomory, R. E., 14, 88, 95, 96, 146, 277
Gonzalez, T., 10, 281
Gottlieb, E. S., 76, 191, 277, 278
Graham, R. L., 10, 223, 233, 278
Greenberg, H., 29, 88, 96, 278
Grötschel, M., 74, 275
Guignard, M. M., 30, 201, 278

Hall, A. D., 248, 281
Hammer, P. L., 47, 75, 276, 278
Hartvigsen, D., 77, 278
Hegerich, R. L., 29, 88, 278
Hirschberg, D. S., 92, 278
Hopcroft, J. E., 15, 18, 223, 275
Horowitz, E., 29, 32, 39, 43, 68, 278
Hudson, P. D., 22, 278
Hung, M. S., 163, 168, 179, 184, 185, 237, 277, 278
Hu, T. C., 5, 95, 96, 142, 144, 145, 278, 281
Ibarra, O. H., 14, 53, 54, 56, 95, 125, 278
Ingargiola, G. P., 14, 45, 88, 91, 176, 184, 278
Jaikumar, R., 197, 206, 213, 218, 219, 277
Jeroslow, R., 75, 275
Johnson, D. S., 6, 8, 10, 120, 131, 177, 178, 222, 223, 233, 276, 277, 278
Johnson, E. L., 13, 75, 276, 278
Johnson, S. C., 145, 278
Jomsten, K., 201, 203, 206, 218, 278
Kannan, R., 92, 279
Kaplan, S., 279
Karp, R. M., 6, 10, 50, 279
Kayal, N., 80, 277
Kemighan, B. W., 145, 278
Kim, C. E., 14, 53, 54, 56, 95, 125, 278
Kim, S., 201, 278
Klastorin, T. D., 209, 279
Klingman, D., 80, 277
de Kruyver, C. A., 5, 281
Knuth, D. E., 107, 279
Kolesar, P. J., 14, 29, 279
Korsh, J. F., 14, 45, 88, 91, 145, 176, 184, 276, 278
Kowalik, J. S., 5, 32, 281
Kuhn, N. W., 191, 279
Kung, D. S., 80, 275
Lagarias, J. C., 126, 279
Lageweg, B. J., 30, 279
Laurière, M., 30, 48, 279
Lawler, E. L., 56, 95, 125, 126, 131, 191, 279
Lenard, M. L., 95, 144, 278
Lenstra, J. K., 10, 30, 50, 279
Levner, E. V., 56, 125, 126, 131, 277, 279
Libura, M., 57, 281
Lucker, G. S., 56, 92, 137, 279
Maculan, N., 20, 279
Magazine, M. J., 56, 95, 142, 143, 279
Mamedov, K. Sh., 30, 282
Marchetti-Spaccamela, A., 57, 59, 277, 279
Martello, S., 5, 14, 20, 22, 24, 32, 36, 48, 60, 61, 68, 85, 88, 91, 93, 96, 98, 100, 101, 102, 107, 109, 116, 118, 119, 121, 122, 131, 135, 139, 145, 146, 149, 154, 159, 162, 168, 169, 170, 172, 175, 176, 179, 180, 182, 184, 185, 191, 195, 204, 206, 209, 212, 213, 218, 228, 233, 237, 248, 261, 263, 276, 277, 279, 280
Mazzola, J. B., 209, 280
McDiarmid, C. J., 10, 50, 279
Meanti, M., 57, 280
Mingozzi, A., 168, 276
Müller-Merbach, H., 23, 280
Murphy, R. A., 47, 280
Näsberg, M., 201, 203, 206, 218, 278
Nauss, R., 47, 275
Nauss, R. M., 32, 68, 80, 280
Neebe, A., 168, 280
Nemhauser, G. L., 5, 74, 76, 88, 96, 277, 280, 281
Nemhauser, J. L., 95, 142, 143, 279
Ness, D. N., 282
Odlyzko, A. M., 126, 279
Oehlrandt, K., 88, 275
Oguz, O., 56, 279
Padberg, M. W., 13, 76, 276, 281
Papadimitriou, C. H., 5, 281
Parker, R. G., 88, 275
Peled, U. N., 75, 278
Plateau, G., 22, 30, 36, 47, 48, 60, 68, 116, 276, 277, 281
Puech, C., 126, 275
Pulleyblank, W. R., 74, 281
Rao, M. R., 76, 191, 277, 278
Rinnooy Kan, A. H. G., 10, 50, 57, 279, 280, 281
Ross, G. T., 30, 163, 192, 193, 197, 204, 213, 218, 275, 281
Roveda, C., 191, 276
Ryder, B. F., 248, 281
Sahni, S., 10, 29, 32, 39, 43, 50, 68, 71, 121, 278, 281
Salkin, H. M., 5, 281
Schreck, H., 128, 281
Schrijver, A., 5, 74, 281
Shetty, C. M., 88, 275
Sinha, P., 80, 275, 281
Soland, R. M., 163, 192, 193, 197, 204, 213, 218, 281
Spielberg, K., 30, 278
Srinivasan, V., 191, 281
Steiglitz, K., 5, 281
Stougie, L., 57, 280
Suhl, U., 32, 281
Syslo, M. M., 5, 32, 281
Szkatula, K., 57, 281

Taha, H. A., 5, 281
Thompson, G. L., 191, 281
Tien, B. N., 142, 145, 281
Tinhofer, G., 128, 281
Todd, M., 128, 281

Toth, P., 5, 14, 20, 22, 24, 32, 36, 38, 39, 44, 45, 48, 60, 61, 68, 85, 88, 91, 93, 96, 98, 100, 101, 107, 109, 116, 118, 119, 121, 122, 131, 135, 139, 145, 146, 149, 154, 159, 162, 168, 169, 170, 172, 175, 179, 180, 182, 184, 185, 191, 195, 204, 206, 209, 212, 213, 218, 228, 233, 237, 248, 261, 263, 276, 277, 279, 280, 281
Trotter, L. E., 76, 280
Trotter, L. E., Jr., 95, 142, 143, 279

Ullman, J. D., 10, 15, 18, 223, 233, 275, 278
Ullmann, Z., 88, 281

Van Wassenhove, L. N., 197, 206, 213, 218, 219, 277
Veliev, G. P., 30, 282
Vercellis, C., 57, 279, 280
Verebriusova, A., 107, 282
Villela, P. R. C., 22, 282

Walker, J., 80, 276
Walukiewicz, S., 5, 23, 24, 26, 80, 276

Weingartner, H. M., 282
Wolsey, L. A., 5, 74, 75, 76, 281, 282
Wong, C. K., 92, 278
Wright, J. W., 146, 151, 282

Zemel, E., 14, 17, 47, 57, 58, 59, 60, 62, 68, 76, 77, 80, 275, 278, 282
Zoltners, A. A., 32, 60, 80, 275, 281, 282
Subject index

Note: abbreviations used in the text and in this index:

BCMP = Bounded Change-Making Problem
BKP = Bounded Knapsack Problem
BPP = Bin-Packing Problem
CMP = Change-Making Problem
GAP = Generalized Assignment Problem
KP = 0-1 Knapsack Problem
MCKP = Multiple-Choice Knapsack Problem
MKP = 0-1 Multiple Knapsack Problem
SSP = Subset-Sum Problem
UEMKP = Unbounded Equality Constrained Min-Knapsack Problem
UKP = Unbounded Knapsack Problem

Additional constraints, bounds from, 20–23
ADJUST procedure, 198–200 example using, 200
Ahrens–Finke (dynamic programming) algorithm, 107 computational experiments using, 129
Approximate algorithms
BKP solved using, 86–87
BPP solved using, 222–224
GAP solved using, 206–209
Assignment problems see Generalized Assignment Problem; LEGAP; MINGAP; XYGAP
Asymptotic worst-case performance ratio, 223
AVIS problem, 129
Balas–Zemel algorithm, 58–60 computational experiments using, 70
Best-Fit (BF) algorithm, 223, 224
Best-Fit Decreasing (BFD) algorithm, 223–224, 238 Bibliography, 275
Binary knapsack problem see 0-1 Knapsack Problem (KP)
Binary tree, upper bound of KP, 26
Bound-and-bound algorithm, 171
MKP solved using, 172–176
Bound-and-bound method, 170–172
Bounded Change-Making Problem (BCMP), 153–156
branch-and-bound algorithm used, 155
computational experiments for solution of, 156
continuous relaxation of, 153–154
definition of, 153
Fortran-coded algorithm used, 247, 259–261
greedy algorithm used, 155
lower bound for, 154
Bounded Knapsack Problem (BKP), 3, 81–91
approximate algorithms used, 86–87
branch-and-bound algorithms used, 88–89
computational experiments for solution of, 89–91
definition of, 81
dynamic programming used, 88
exact algorithms used, 87–89
Fortran-coded algorithm used, 247, 252–254
NP-hardness of, 6
recursive formulae for, 7
special case of, 91–103
transformation into KP, 82–84
upper bounds of, 84–86
Branch-and-bound algorithms
BCMP solved using, 155
BKP solved using, 88–89
CMP solved using, 146–149
compared with dynamic programming algorithms, 70
GAP solved using, 204–206
Greenberg-Hegerich approach, 29, 30
Kolesar algorithm, 29
KP solved using, 14, 26–27, 29–36
MKP solved using, 168–170
Branch-and-bound tree, upper bound of KP, 27
BZ algorithm, 60
BZC algorithm, 58–59
Canonical inequalities, 75
Canonical vectors, 142
CDC-Cyber 730 computer
CMP experiments run on, 151
KP experiments run on, 68–71
MKP experiments run on, 183, 184, 185
SSP experiments run on, 129, 130, 132–134
Change-Making Problem (CMP), 4, 137–156
BCMP as generalization of, 153
branch-and-bound algorithms used, 146–149
computational experiments for solution of, 151–153
definition of, 153
dynamic programming used, 145–146
exact algorithms used, 145–149
Fortran-coded algorithms used, 247, 258–259
greedy algorithms used, 140–142
large-size problems, 149–151
lower bounds for, 138–140
NP-hardness of, 7
recursive formulae for, 8
Combinatorial Optimization, 13
Computational experiments
BCMP-solving algorithm, 156
BKP-solution algorithms, 89–91
CMP-solution algorithms, 151–153
Fayard–Plateau algorithm used, 70
GAP-solving algorithms, 213–220
KP-solution algorithms, 67–74
MKP-solving algorithms, 182–187
SSP-solution algorithms, 128–136
UKP-solution algorithms, 102–103
Continuous Knapsack Problem, 16
solutions of, 17, 19
Continuous relaxations, 11
BCMP, 153–154
BPP, 224
GAP, 192
KP, 16–17
MKP, 160–162
CORE algorithm, 63–64, 72
Core problem
KP, 14, 57
SSP, 116
UKP, 98
Critical item
finding in nominated time, 17–19, 25
meaning of term, 16
CRITICAL... ITEM algorithm, 18
BCMP solved using, 155
Critical ratio, definition of, 17
Dantzig bound, 17, 24, 45, 59, 162, 197
Decision-trees
BPP lower bounds, 239
HS algorithm, 33
MT1 algorithm, 37
MTCl algorithm, 149
MTM algorithm, 175
MTRGl algorithm, 212
MTS algorithm, 115
MTUl algorithm, 99
MTU2 algorithm, 102
Depth-first algorithm, meaning of term, 29
Depth-first branch-and-bound algorithms, 168
GAP solved using, 204–206
Diophantine equation, SSP related to, 105
Dominated states
elimination of, 39–42
meaning of term, 39
DP1 algorithm, 39
compared with DP2, 44
example using, 42
DP2 algorithm, 41–42
compared with DP1, 44
element using, 42, 44
states of, 42, 44
DPS algorithm, 109
Dudzinski–Walukiewicz bound, 24
Dynamic programming
algorithms compared with branch-and-bound algorithms, 70
BKP solved using, 88
CMP solved using, 145–149
combined with tree-search to solve
SSP, 109–116
knapsack problems first solved by, 14
KP solved using, 36–45
meaning of term, 37–38
SSP solved using, 106–109
Exact algorithms
BKP solved using, 87–89
CMP solved using, 145–149
GAP solved using, 204–206
KP solved using, 57–67
computational experiments
involving, 68–71
large-size CMP solved using, 149–151
large-size UKP solved using, 98, 100–102
MKP solved using, 167–176
SSP solved using, 106–117
computational experiments
involving, 129–130
UKP solved using, 95–98
Fayard–Plateau algorithm, 60–61
computational experiments using, 70
First-Fit Decreasing (FFD) algorithm, 223–224, 238, 240
First-Fit (FF) algorithm, BBP solved using, 222–223, 224
Fisher–Jaikumar–Van Wassenhove
algorithm, GAP solved using, computational experiments for, 214–218
Fisher–Jaikumar–Van Wassenhove bound, 197, 200–201
FPDHR reduction algorithm, 47
FS(k) algorithm, 124
compared with MTSS(k) algorithm, 125
Fully polynomial-time approximation schemes, 10, 14
computational inferiority of, 72
KP solved using, 53–57
not possible for MKP, 178
SSP solved using, 125–126
Generalized Assignment Problem (GAP), 4, 189–220
approximate algorithms used, 206–209
branch-and-bound algorithms used, 204–206
computational experiments for solution of, 213–220
definition of, 189
exact algorithms used, 204–206
Fortran-coded algorithms used, 247, 265–270
Lagrangian relaxation of, 193–194
minimization version of, 190
NP-hardness of, 8
reduction algorithms used, 209–213
relaxation of capacity constraints for, 192–195
relaxation of semi-assignment constraints for, 195–197
relaxations of, 192–204
upper bounds of, 192–204
Genso–Levner algorithm see GL(c) algorithm
GL(c) algorithm, 125–126
computational experiments using, 131–134
example using, 126, 127
Glossary, 272
GREEDY algorithm, 28–29
Greedy algorithms, 28
BCMP solved using, 155
Greedy algorithms (cont.)
classes of knapsack problems solved by, 142–145
CMP solved using, 140–142
computational experiments involving, 151
KP solved using, 27–29
MKP solved using, 166–167
SSP solved using, 117–119
GREEDYB algorithm, 86–87
computational experiments using, 89–91
GREEDYS algorithm, 179
use in MTHM, 180, 181
GREEDYU algorithm, 95
GREEDYUM algorithm, 141
BCMP solved using, 155
example using, 141
GS algorithm, 118, 50
Heuristic procedures used
Balas–Zemel algorithm for KP, 59
Martello–Toth algorithm for GAP, 206–208, 268–270
Martello–Toth algorithm for MKP, 180–182, 263–265
Horowitz–Sahni branch-and-bound algorithm, 30–32
compared with Martello–Toth algorithm, 32–34
computational experiments using, 69
notations used, 30
Horowitz–Sahni dynamic programming algorithm, 43
dynamic programming used, 43
example using, 43
states of, 43
HP 9000/840 computer
BKP experiments run on, 89–91
BPP experiments run on, 240–244
CMP experiments run on, 152, 156
GAP experiments run on, 214–220
KP experiments run on, 71–73
MKP experiments run on, 185, 186
SSP experiments run on, 130
UKP experiments run on, 103
HS algorithm, 30–31
dynamic programming used, 33
example using, 32
Hung–Fisk branch-and-bound algorithms
branching strategy for, 168
computational experiments using, 183, 184
MKP solved using, 168
Ibarra–Kim polynomial-time approximate algorithm, 53
see also IK(c) algorithm
IBM-7094 computer, BKP solved on, 88
IK(c) algorithm, 53–54
example using, 55
KP solved using, 54–55
SSP solved using, 125
IKR algorithm, 46
compared with Martello–Toth algorithm, 48
example using, 46–47
time complexity of, 47
IKRM algorithm, 176
computational experiments using, 183, 184
time complexity of, 177
Ingargiola–Korsh algorithm
BKP solved using, 89–90
computational experiments using, 89–90
Ingargiola–Korsh reduction algorithms, 45–46, 176
see also IKR algorithm; IKRM algorithm
Integer Linear Programming problem, 13
Investments, knapsack problem solution for, 1
J(k) algorithm, 120, 122
compared with procedure MTSS(K), 122–123
computational experiments using, 131–135
dynamic programming used, 121
example using, 121
Johnson algorithm see J(k) algorithm
Knapsack polytope, 74–77
0-1 Knapsack Problem (KP), 2, 13–80
approximate algorithms used, 50–57
BKP as generalization of, 81
BKP transformed into, 82–84
bounds from additional constraints, 20–23
bounds from partial enumeration, 24–27
branch-and-bound algorithms used, 29
definition of, 13
dynamic programming used, 36–45
exact algorithms used, 57–67
Fortran-coded algorithms used, 247, 248–252
fractions handled for, 14
Knapsack problems

literature reviews on, 5
meaning of term, 1–2
termology used, 2–5

L1 lower bound (for BPP), 225–228
computational experiments using, 241–244

L2 algorithm, 231–232
example using, 236
main variables in, 231
worst-case performance ratio of, 232–233

L3 algorithm, 235–236
computational experiments using, 241–244
example using, 236, 240

Lagrangian relaxations, 11
bounds from, 23–24
BPP, 226–227
GAP, 193–194
KP, 23–24
MKP, 162–165
Large-size CMP, algorithm for, 149–151
Large-size KP, algorithms for, 57–67
Large-size SSP, algorithm for, 116–117
Large-size UKP, algorithm for, 98, 100–102
Lawler (polynomial-time approximation) scheme, 125, 126

computational experiments using, 131–134
LBFD algorithm
BPP lower bound using, 233
computational experiments using, 241–244
LEGAP, 190–191
Linear Min-Sum Assignment Problem, 191
0-1 Linear Programming Problem (ZOLP) algorithm for solution of, 171
definition of, 170
lower bound on, 171
Linear programming relaxation, KP, 16–17
LISTS algorithm, 110–111
texample using, 111
Lower bounds, 9
BCMP, 154
BPP, 224–233
CMP, 138–140
ZOLP, 171
LOWER procedure, 173

Martello–Toth algorithms
GAP solved using, 204–206, 212
computational experiments for, 214–218
Martello–Toth bound, 195, 197
Martello–Toth branch-and-bound algorithm, 32–36
branching strategy for, 169
compared with Horowitz–Sahni algorithm, 32–34
computational experiments using, 183, 184
Fortran implementation of, 248
MKP solved using, 168–170
Martello–Toth exact algorithm, 61–67
Martello–Toth polynomial-time algorithm
Fortran implementation of, 263–265
MKP solved using, 179–182
Martello–Toth reduction algorithm, 48
compared with Ingargiola–Korsh algorithm, 48
MINGAP, 190
Minimal covers, meaning of term, 75
MNT algorithm, 144–145
texample using, 145
MT1 algorithm, 34–36
computational experiments using, 69, 70
decision-tree of, 37
texample using, 36
MT1 algorithm (cont.)
 Fortran implementation of, 247, 248–249
MT1’ algorithm, 64
MT1R algorithm, 247, 249–251
MT2 algorithm, 66–67
 computational experiments using, 70, 71
 Fortran implementation of, 247, 251–252
 heuristic version of, 72
MTB2 algorithm
 computational experiments using, 89–91
 Fortran implementation of, 247, 252–254
MTC1 algorithm, 147–148
 computational experiments using, 151–153
decision-tree for, 149
 example using, 149
MTC2 algorithm, 150
 computational experiments using, 152
 Fortran implementation of, 247, 258–259
MTCB algorithm, 155
 computational experiments using, 156
 Fortran implementation of, 247, 259–261
MTG algorithm
 computational experiments using, 214–217
development of, 205–206
 Fortran implementation of, 247, 265–268
MTGS algorithm, 118, 121
MTGSM algorithm, 123–124
 example using, 124
MTHG algorithm, 206–207
 computational experiments using, 219–220
 example using, 208
 Fortran implementation of, 247, 268–270
MTHM algorithm, 180–181
 computational experiments using, 185–187
 example using, 182
 Fortran implementation of, 247, 263–265
MTM algorithm, 173–174
 computational experiments using, 183–186
decision-tree for, 175
 example using, 175
 Fortran implementation of, 247, 261–263
 modified version of, 176
MTP algorithm, 237–238
 computational experiments using, 244–245
decision-tree produced by, 239
 example using, 238–240
 Fortran implementation of, 247, 270–272
MTR algorithm, 48–49
 computational experiments using, 69
 example using, 49
MTR’ algorithm, 64–65
MTRG1 algorithm, 209–210
decision-tree when used, 212
 example using, 211–213
MTRP algorithm, 234
 example using, 236, 240
time complexity of, 237
MTS algorithm, 113–114
decision-tree for, 115
 example using, 115
MTSL algorithm, 116–117
 computational experiments using, 129–130
 Fortran implementation of, 129–130
MTSS(\(k\)) algorithm, 121–122
 compared with procedure J(\(k\)), 122–123
 computational experiments using, 131–136
 example using, 123
 worst-case performance ratio of, 122
MTU1 algorithm, 96–97
 computational experiments using, 103
decision-tree for, 99
 example using, 98
MTU2 algorithm, 100
 computational experiments using, 103
decision-tree for, 102
 example using, 101
 Fortran implementation of, 247, 254–255
Müller-Merbach bound, 23
Multiple-Choice Knapsack Problem (MCKP), 3, 77–80
0-1 Multiple Knapsack Problem (MKP), 157–187
 approximate algorithms used, 177–182
 branch-and-bound algorithms used, 168–170
computational experiments for solution of, 182–187
continuous relaxation of, 160–162
definition of, 157
exact algorithms used, 167–176
Fortran-coded algorithms used, 247, 261–265
greedy algorithms used, 166–167
Lagrangian relaxation of, 162–165
LEGAP as generalization of, 191
NP-hardness of, 8
polynomial-time approximation algorithms used, 179–182
reduction algorithms used, 176–177
relaxations of, 158–165
surrogate relaxation of, 158–162
upper bounds of techniques to obtain, 158–165
worst-case performance of, 165–166
Multiple knapsack problems, see also Bin-Packing Problem (BPP);
Generalized Assignment Problem (GAP); 0-1 Multiple Knapsack Problem (MKP)
Multiplier adjustment method, GAP upper bound determined by, 197–201
Nauss exact algorithm, computational experiment using, 69
Next-Fit Decreasing (NFD) algorithm, 223–224
Next-Fit (NF) algorithm, 222, 224
NP-hard problems, 6–9
(1, k)-configuration, 76
One-point theorem, 144
Partial enumeration, KP bounds from, 24
Performance of algorithms, 9
Polynomial-time approximation schemes, 10, 14
KP solved using, 50–53
computational experiments, 71–74
MKP solved using, 179–182
SSP solved using, 120–125
computational experiments, 131–136
Polytope, meaning of term, 74
Probabilistic analysis, 10
KP, 56–57
SSP, 126, 128
Procedures
AVIS, 129
computational experiments using, 129
EVEN/ODD, 128
computational experiments using, 129, 133
TODD, 128
computational experiments using, 129, 134
Procedures
ADJUST, 198–200
example using, 200
BOUND AND BOUND, 171
BZ, 60
BZC, 58–59
CORE, 63–64, 72
CRITICAL ITEM, 18
BCMP solved using, 155
DP1, 39
compared with DP2, 44
example using, 42
DP2, 41–42
compared with DP1, 44
example using, 42, 44
states of, 42
DPS, 109
example using, 83–84
GL(c), 125–126
computational experiments using, 131–134
example using, 126, 127
GREEDY, 28–29
SSP solved using, 117
GREEDYB, 86–87
computational experiments using, 89–91
GREEDYS, 179
use in MTHM, 180, 181
GREEDYU, 95
GREEDYUM, 141
BCMP solved using, 155
example using, 141
GS, 50, 118
H, 59
HS, 30–31
decision-tree of, 33
example using, 32
IK(c), 53–54
dynamic programming phase of, 53, 55
example using, 55
greedy phase of, 54, 56
SSP solved using, 125
IKR, 46
example using, 46–47
IKRM, 176
computational experiments using, 183, 184
IKRM (cont.)
 time complexity of, 177
 J(k), 120, 122
 computational experiments using, 131–135
 example using, 121
 computational experiments using, 241–244
 example using, 236
 main variables in, 231
 worst-case performance ratio of, 232–233
 computational experiments using, 241–244
 example using, 236, 240
 computational experiments using, 241–244
 example using, 236
 Fortran implementation of, 247, 248–249
 decision-tree of, 37
 example using, 36
 Fortran implementation of, 247, 248–249
 computational experiments using, 69, 70
 decision-tree of, 37
 computational experiments using, 251–252
 heuristic version of, 72
 computational experiments using, 251–252
 heuristic version of, 72
 computational experiments using, 151–153
 decision-tree for, 149
 computational experiments using, 152
 computational experiments using, 247, 258–259
 computational experiments using, 156
 Fortran implementation of, 247, 258–259
 computational experiments using, 156
 Fortran implementation of, 247, 259–261
 computational experiments using, 123–124
 example using, 124
 computational experiments using, 219–220
 example using, 208
 computational experiments using, 185–187
 example using, 182
 computational experiments using, 263–265
 computational experiments using, 183–186
 decision-tree for, 175
 example using, 175
 computational experiments using, 261–263
 modified version of, 176
 computational experiments using, 69
 example using, 49
 computational experiments using, 212
 example using, 211–213
 example using, 210–211
 computational experiments using, 234
 time complexity of, 237
 computational experiments using, 129–130
 Fortran implementation of, 247, 256–257
 computational experiments using, 121–122
 computational experiments using, 131–136
 example using, 123
 worst-case performance ratio of, 122
 computational experiments using, 103
 decision-tree for, 99
 example using, 98
MTU2, 100
computational experiments using, 103
decision-tree for, 102
example using, 101
Fortran implementation of, 247, 254–255

R, 59
REC1, 38–39
REC2, 40–41
dynamic programming algorithm using, 41–42
example using, 44
RECS, 108
S(k), 51
example using, 52
TB01, 83
UPPER, 172–173

Pseudo-polynomial algorithm, 7
Pseudo-polynomial transformation, 8

REC1 procedure, 38–39
REC2 procedure, 40–41
dynamic programming algorithm using, 41–42
example using, 44
Recognition problem, 6
RECS procedure, 108

Reduction algorithms
BPP solution involving, 233–237
GAP solution involving, 209–213
KP solution involving, 45–50
MKP solution involving, 176–177

Reduction procedures
Balas–Zemel method use of, 59
first used, 14

References listed, 275

Relaxations, 11
BCMP, 153–154
BPP, 224–227
GAP, 192–204
KP, 16–20
MKP, 158–165
see also Continuous relaxations;
Lagrangian relaxations; Surrogate relaxations
Ross–Soland algorithm, GAP
computational experiments using, 214–218
Ross–Soland bound, 193, 197, 201
Sahni polynomial-time approximation scheme, 51, 53, 56

computational experiments using, 72–73
Sequential lifting procedure, 76
Simultaneous lifting procedure, 76
Single knapsack problems
see Bounded Change-Making Problem;
Bounded Knapsack Problem;
Change-Making Problem;
Multiple-Choice Knapsack Problem;
Subset–Sum Problem;
Unbounded Equality Constrained Min–Knapsack Problem;
Unbounded Knapsack Problem
S(k) algorithm, 51
examples using, 52
see also Sahni polynomial-time approximation scheme

States
meaning of term, 38
procedure DP2, 42
Stickstacking Problem, 105
see also Subset-Sum Problem (SSP)
Subset-Sum Problem (SSP), 3, 105–136
approximate algorithms used, 117–128
core of, 128–136
computational experiments for solution of, 130–136
core problem of, 116
definition of, 105
dynamic programming used, 106–109
exact algorithms used, 106–117
computational experiments
for, 129–130
Fortran-coded algorithm used, 247, 256–257
fully polynomial-time approximation schemes used, 125–126
greedy algorithm used, 117–119
hybrid algorithm used, 109–116
large-size problems solved, 116–117
NP-hardness of, 6
polynomial-time approximation schemes used, 120–125
computational experiments involving, 131–136
probabilistic result for, 126, 128
recursive formulae for, 7
Surrogate relaxations, 11
BPP, 225–226
MKP, 158–162

TB01 algorithm, 83
example using, 83–84
Terminology, 2–5
TODD problem, 128, 129, 133
Toth dynamic programming algorithm, 44 computational experiments using, 69
Tree-search, combined with dynamic programming to solve SSP, 109–116

Unbounded Change-Making Problem, 4
Fortran-coded algorithms used, 247, 258–259
see also Change-Making Problem
(CMP)
Unbounded Equality Constrained Min-
Knapsack Problem (UEMK), 141
Unbounded Knapsack Problem (UKP), 3, 91–103
approximate algorithms used, 93–95 computational experiments for solution of, 102–103
core problem of, 98
definition of, 91–92
exact algorithms used, 95–98
Fortran-coded algorithm used, 247, 254–255
large-size problems, 98, 100–102
minimization form of, UEMK containing, 141
upper bounds of, 92–94
Upper bounds, 11
BKP, 84–86
GAP, 192–204
KP, 16–20
MKP
techniques to obtain, 158–165
worst-case performance of, 165–166
UKP, 92–94
UPPER procedure, 172–173

Value Independent Knapsack Problem, 105
see also Subset-Sum Problem (SSP)
Variable splitting method, GAP relaxed by, 201–204

Worst-case analysis, 9–10
Worst-case performance ratio
BPP algorithms, 222
BPP lower bounds, 224, 228, 232
definition of, 9
L2 algorithm, 232–233
MKP upper bounds, 165–166
MTSS(\(k\)) algorithm, 122
Worst-case relative error, 10
Worst-Fit Decreasing (WFD) algorithm, 238
Wright algorithm, 146
computational experiments using, 151

XYGAP, 201

Zoltners algorithm, 60